

Linear Functions

- Simplest: linear filtering. Replace each pixel by a linear combination of its neighbors.
- The prescription for the linear combination is called the "convolution kernel".

10	5	3
4	5	1
1	1	7

Local image data

Modified image data

Phase and Magnitude

- Fourier transform of a real function is complex

 difficult to plot, visualize
- instead, we can think of the phase and magnitude of the transform
- Phase is the phase of the complex transform
- Magnitude is the magnitude of the complex transform
- Curious fact
 - all natural images have about the same magnitude transform
 - hence, phase seems to matter, but magnitude largely doesn't
- Demonstration
 - Take two pictures, swap the phase transforms, compute the inverse - what does the result look like?

	Security	Fourier Transform
	1.44	a presidente en la contra de la
	3. 3[n - m]	C.943
	3.1 ($\sum_{k=-\infty}^{\infty} 2\pi i k (w + 2\pi k)$
	A #101 (H +1)	 It is a spiritually a spiritual of the spiri
	S. edge	$\frac{1}{1-e^{-2\alpha}} + \sum_{k=-\infty}^{n} n!(n+2n)$
	6. (vi+10vi4)4] 104 < 0	L - et MP of single and the
	$2, \; \frac{e^{2}\sin \sigma_{\mu}(n+1)}{\sin n \mu} s(n) \; \; (0 < 0) \; . \label{eq:2.1}$	$\frac{1}{1-2r\cos(m_{p}e^{-2r}+r^{2}e^{-2r})}$
Oppenheim, Schwärz and	8. alman	$X[a^{(n)}] = \begin{cases} 1, & u \le n, \\ 0, & u_n < u \le n \end{cases}$
Buck,	$\hat{\boldsymbol{x}}, \boldsymbol{x}[\boldsymbol{y}] = \begin{cases} 1, & 0 = \boldsymbol{y} \in M\\ 0, & \text{attention} \end{cases}$	$\frac{\sin(\mu(M+1)/2)}{\sin(\mu/2)}e^{-\mu/2/2}$
signal processing,	D. alua	$\sum_{i=1}^{n} 2\pi i \delta(x - \omega_0 + 2\pi k)$
Prentice Hall, 1999	11. co+(=+++)	$\sum_{i=1}^{\infty} me^{i\theta}\delta(e - e_{i\theta} + 2\pi i \theta) + e_{i\theta}^{-i\theta}\delta(e + e_{i\theta} + 2\pi i \theta)$

Why is the Fourier domain useful?

- It tells us the effect of linear convolutions.
- There is a fast algorithm for performing the DFT, allowing for efficient signal filtering.
- The Fourier domain offers an alternative domain for understanding and manipulating the image.

Why is the Fourier transform useful?

- Convolution theorem:
 - the Fourier transform of the convolution of two functions is the product of their individual Fourier transforms
- Addition Theorem:
 - The Fourier transform of the addition of two functions f(x) and g(x) is the **addition of their Fourier transforms** F(s) and G(s).
- Shift Theorem:
 - A function f(x) shifted along the x-axis by a to become f(x-a) has the Fourier transform $e^{2 \pi i w} F(s)$. The magnitude of the transform is the same, only the phases change.
- Similarity Theorem:

.

•

- For a function f(x) with a Fourier transform F(s), if the x-axis is scaled by a constant a so that we have f(ax), the Fourier transform becomes (1/a)F(s(a). In other words, a "wide" function in the time-domain is a "narrow" function in the frequency-domain.
- Modulation Theorem:
 - The Fourier transform of a function f(x) multiplied by $\cos(2\pi fx)$ is
 - $\frac{1}{2}F(s-f) + \frac{1}{2}F(s+f)$

Fourier transform of convolution

Consider a (circular) convolution of g and h

$f = g \otimes h$

Fourier transform of convolution

 $\overline{f = g \otimes h}_{F[m,n] = DFT(g \otimes h)}$

Write the DFT and convolution explicitly

$$F[m,n] = \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} \sum_{k,l} g[u-k,v-l]h[k,l]e^{-\pi \left(\frac{um}{M} + \frac{vn}{N}\right)}$$

Fourier transform of convolution

$$f = g \otimes h$$

$$F[m,n] = DFT(g \otimes h)$$

$$F[m,n] = \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} \sum_{k,l} g[u-k,v-l]h[k,l]e^{-a\left(\frac{im}{M},\frac{im}{N}\right)}$$

$$= \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} \sum_{k,l} g[u-k,v-l]e^{-a\left(\frac{im}{M},\frac{im}{N}\right)}h[k,l]$$

$$= \sum_{\mu=-k}^{M-1} \sum_{u=-l}^{N-1} \sum_{k,l} g[\mu,\upsilon]e^{-a\left(\frac{(k+\mu)m}{M},\frac{(k+\nu)}{N}\right)}h[k,l]$$
Perform the DFT (circular boundary conditions)

$$= \sum_{k,l} G[m,n]e^{-\pi i \left(\frac{km}{M},\frac{in}{N}\right)}h[k,l]$$

Fourier transform of convolution

$$f = g \otimes h$$

$$F[m,n] = DFT[g \otimes h]$$

$$F[m,n] = \sum_{u=0}^{M-1N-1} \sum_{k,l} g[u-k,v-l]h[k,l]e^{-\pi \left(\frac{um}{M},\frac{m}{N}\right)}$$

$$= \sum_{u=0}^{M-1N-1} \sum_{k,l} g[u-k,v-l]e^{-\pi \left(\frac{um}{M},\frac{m}{N}\right)}h[k,l]$$

$$= \sum_{u=k}^{M-1N-1} \sum_{k,l} g[\mu,v]e^{-\pi \left(\frac{(k+k)m}{M},\frac{(k+v)m}{N}\right)}h[k,l]$$

$$= \sum_{k,l} G[m,n]e^{-\pi \left(\frac{km}{M},\frac{m}{N}\right)}h[k,l]$$
Perform the other DFT (circular boundary conditions)

$$= G[m,n]H[m,n]$$

Convolution versus FFT

- 1 dFFT: O(NlogN) computation time, where N is number of samples.
- 2 dFFT: 2N(NlogN), where N is number of pixels on a side
- Convolution: K N², where K is number of samples in kernel
- Say N=2¹⁰, K=100. 2 dFFT: 20 2²⁰, while convolution gives 100 2²⁰

