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Image Filtering

Reading: 
–Chapter 7, F&P

Due: Problem Set 1

February 14, 2008

What is image filtering?

• Modify the pixels in an image based on some function 
of a local neighborhood of the pixels.

Some function

Linear Functions
• Simplest: linear filtering.

Replace each pixel by a linear combination of its 
neighbors.

• The prescription for the linear combination is called 
the “convolution kernel”.

Convolution
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Linear Filtering (warm-up slide)

?
Original

Linear Filtering (warm-up slide)

?
Original Filtered

(no change)
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Linear Filtering Shifted

Linear Filtering Blurring

Blur Example Linear Filtering (warm-up slide)
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Linear Filtering (no change) Linear Filtering

Remember Blurring Sharpening

Sharpening Example Sharpening
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Oriented Filters
• Filter bank:

• Mix of edge, bar, spot filters at multiple scales and 
orientations

1st derivative of a gaussian 2nd derivative of a gaussian

6 orientations 6 orientations

3 
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8 Laplacian of Gaussian filters 4 Gaussian filters

Linear Image Transformation
• In analyzing images, it’s often useful to make a 

change of basis.
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= Vectorized image

Fourier Transform, or
Wavelet Transform, or
Steerable Pyramid Transform

Transformed image

Self-inverting Transforms

• Same basis functions are used for the inverse transform
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Transpose and complex conjugate

Example: Fourier Transform
• Forward Transform

• Inverse Transform

FFT on-line book: http://ccrma.stanford.edu/%7Ejos/mdft/mdft.html
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Phase and Magnitude
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Discrete-time, continuous frequency 
Fourier transform
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Bracewell’s dictionary of Fourier 
transform pairs

Bracewell’s dictionary of Fourier 
transform pairs

Why is the Fourier domain useful?
• It tells us the effect of linear convolutions.
• There is a fast algorithm for performing the DFT, 

allowing for efficient signal filtering.
• The Fourier domain offers an alternative domain for 

understanding and manipulating the image.

Why is the Fourier transform useful?
• Convolution theorem:

• the Fourier transform of the convolution of two functions is the product of 
their individual Fourier transforms

• Addition Theorem:
• The Fourier transform of the addition of two functions f(x) and g(x) is the 

addition of their Fourier transforms F(s) and G(s). 
• Shift Theorem:

• A function f(x) shifted along the x-axis by a to become f(x-a) has the Fourier 
transform                     . The magnitude of the transform is the same, only 
the phases change.

• Similarity Theorem:
• For a function f(x) with a Fourier tranform F(s), if the x-axis is scaled by a 

constant a so that we have f(ax), the Fourier transform becomes (1/a)F(s/a). In 
other words, a "wide" function in the time-domain is a "narrow" function in the 
frequency-domain.

• Modulation Theorem:
• The Fourier transform of a function f(x) multiplied by                          is )( fxπ2cos
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hgf ⊗=

Fourier transform of convolution

Consider a (circular) convolution of g and h
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hgf ⊗=

( )hgDFTnmF ⊗=],[

Fourier transform of convolution

Take DFT of both sides

hgf ⊗=
( )hgDFTnmF ⊗=],[

Fourier transform of convolution

Write the DFT and convolution explicitly
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hgf ⊗=
( )hgDFTnmF ⊗=],[

Fourier transform of convolution

Move the exponent in
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hgf ⊗=
( )hgDFTnmF ⊗=],[

Fourier transform of convolution

Change variables in the sum
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hgf ⊗=
( )hgDFTnmF ⊗=],[

Fourier transform of convolution

Perform the DFT (circular boundary conditions)
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hgf ⊗=
( )hgDFTnmF ⊗=],[

Fourier transform of convolution

Perform the other DFT (circular boundary conditions)
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Analysis of our simple filters

original
0Pixel offset

co
ef

fic
ie

nt

1.0

Filtered
(no change)
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Analysis of our simple filters

0Pixel offset
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Constant 
magnitude, 
linearly shifted 
phase

δ

Convolution versus FFT
• 1- d FFT:  O(NlogN) computation time, where N is 

number of samples.
• 2- d FFT: 2N(NlogN), where N is number of pixels on 

a side
• Convolution: K N2, where K is number of samples in 

kernel
• Say N=210, K=100.  2- d FFT: 20 220, while 

convolution gives 100 220

The END


